Street-View Change Detection with Deconvolutional Networks
نویسندگان
چکیده
We propose a system for performing structural change detection in street-view videos captured by a vehiclemounted monocular camera over time. Our approach is motivated by the need for more frequent and efficient updates in the large-scale maps used in autonomous vehicle navigation. Our method chains a multi-sensor fusion SLAM and fast dense 3D reconstruction pipeline, which provide coarsely registered image pairs to a deep deconvolutional network for pixel-wise change detection. To train and evaluate our network we introduce a new urban change detection dataset which is an order of magnitude larger than existing datasets and contains challenging changes due to seasonal and lighting variations. Our method outperforms existing literature on this dataset, which we make available to the community, and an existing panoramic change detection dataset, demonstrating its wide applicability.
منابع مشابه
Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملAutomatic skin lesion segmentation with fully convolutional-deconvolutional networks
This paper summarizes our method and validation results for the ISBI Challenge 2017 Skin Lesion Analysis Towards Melanoma Detection Part 1: Lesion Segmentation.
متن کاملPixel Deconvolutional Networks
Deconvolutional layers have been widely used in a variety of deep models for up-sampling, including encoder-decoder networks for semantic segmentation and deep generative models for unsupervised learning. One of the key limitations of deconvolutional operations is that they result in the so-called checkerboard problem. This is caused by the fact that no direct relationship exists among adjacent...
متن کاملSalient Deconvolutional Networks
Deconvolution is a popular method for visualizing deep convolutional neural networks; however, due to their heuristic nature, the meaning of deconvolutional visualizations is not entirely clear. In this paper, we introduce a family of reversed networks that generalizes and relates deconvolution, backpropagation and network saliency. We use this construction to thoroughly investigate and compare...
متن کاملRandomness in Deconvolutional Networks for Visual Representation
We systematically study the deep representation of random weight CNN (convolutional neural network) using the DeCNN (deconvolutional neural network) architecture. We first fix the weights of an untrained CNN, and for each layer of its feature representation, we train a corresponding DeCNN to reconstruct the input image. As compared with the pre-trained CNN, the DeCNN trained on a random weight ...
متن کامل